Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory.

نویسندگان

  • Chen
  • Goldenfeld
  • Oono
چکیده

Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With numerous examples, we illustrate its application to ordinary differential equation problems involving multiple scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to conventional methods, the renormalization group approach requires neither ad hoc assumptions about the structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach provides approximate solutions which are practically superior to those obtained conventionally, although the latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We show that the renormalization group equation may be interpreted as an amplitude equation, and from this point of view develop reductive perturbation theory for partial differential equations describing spatially extended systems near bifurcation points, deriving both amplitude equations and the center manifold. @S1063651X~96!00506-5#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Renormalization Group and Singular Perturbations: Multiple-Scales, Boundary Layers and Reductive Perturbation Theory

Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With numerous examples, we illustrate its application to ordinary differential equation problems involving multiple scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to conventional methods, the renormalization group approach requires neith...

متن کامل

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

Renormalization group theory for global asymptotic analysis.

We show with several examples that renormalization group (RG) theory can be used to understand singular and reductive perturbation methods in a unified fashion. Amplitude equations describing slow motion dynamics in nonequilibrium phenomena are RG equations. The renormalized perturbation approach may be simpler to use than other approaches, because it does not require the use of asymptotic matc...

متن کامل

Renormalization Group Method and Reductive Perturbation Method

It is shown that the renormalization group method does not necessarily eliminate all secular terms in perturbation series to partial differential equations and a functional subspace of renormalizable secular solutions corresponds to a choice of scales of independent variables in the reductive perturbation method. Recently a novel method based on the perturbative renormalization group theory has...

متن کامل

Holographic interpretation of renormalization group approach to singular perturbations in nonlinear differential equations

The philosophy of the renormalization group (e.g., Ref. [1] for a review) shows far richer applications in mathematical physics beyond the original scope of quantum field theories and many body systems. In particular, it has a dramatic application in asymptotic analysis of certain nonlinear differential equations as first advocated by Chen, Goldenfeld, and Oono [2,3]. While the philosophy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 1996